RETROSPECTIVE ANALYSIS OF THE RISK FACTORS FOR PRETERM DELIVERY IN GESTATIONAL DIABETES MELLITUS AND THEIR ADVERSE NEONATAL OUTCOMES

Sonal Dewangan¹, Mithlesh Dewangan²

¹Assistant Professor, Department of Obstetrics and Gynecology, Chandulal Chandrakar Memorial Medical College, Durg

²Associate Professor, Department of Pediatrics, Raipur Institute of Medical Sciences, Raipur Orchid -8, Chouhan Green Valley Bhilai (Durg) Chattisgarh -490020

E-mail: dewangan.mithlesh@rediffmail.com

Abstract

Objectives-This study aims to anticipate all the risk factors involved with preterm birth in women diagnosed with gestational diabetes mellitus (GDM) and to identify the adverse outcomes in their premature babies. Methods-This retrospective hospital-based case-control study was conducted at the Department of Obstetrics and Gynecology of Shri Shankaracharya Institute of Medical Sciences from August 2022 to October 2023. A total of 640 pregnant women were included in this study. Antenatal screening for gestational diabetes was done at 24 weeks of gestation as per the institutional guidelines. The diagnosis of gestational diabetes mellitus (GDM) is based on an oral glucose tolerance test with 75 grams of glucose. Results- Age ≥ 30 years (86% vs 71% p-value <0.001), BMI ≥25 (63% vs 47% p-value <0.01), and prior preterm birth (9.2% vs 3.7% p-value <0.01) were more associated with preterm delivery in mothers with GDM. LGA was more common in cases than controls (6.2% vs 2.2%, p=0.035). RDS (26.9% vs 17.4%, P=0.02) and hypoglycemia (28.4% vs 19.6%, P=0.03) are more common problems in preterm babies of GDM mothers. Conclusions- Mothers with GDM are prone to preterm delivery, with significant risk factors being age≥ 30, BMI≥ 25, prior preterm birth and LGA. GDM also increases the risk of some adverse outcomes, such as RDS and neonatal hypoglycemia.

Keywords- GDM, preterm delivery, preterm birth, risk factors, neonatal outcome

GDM is an essential concern in India since by 2040, the number and birth injury. (8) of diabetic women will reach up to 313.3 million (2). According Mothers with gestational diabetes mellitus (GDM) have a levels to reduce the risks for both the mother and baby. mothers with GDM. Gestational diabetes mellitus (GDM) can lead to adverse effects MATERIAL AND METHODS during childbirth and long-term issues for both the mother and A hospital-based case-control study was conducted at the

hypertension. (7)A variety of neonatal complications are The prevalence of GDM in India ranges from 9% to 16%, as per associated with GDM, like hypoglycemia, neonatal jaundice, the systematic review and meta-analysis of 110 studies.(1) hypocalcemia, polycythemia, respiratory distress syndrome,

to one estimation, more than five million are affected by GDM. greater chance of preterm delivery as compared to the general The main reason for increasing GDM in pregnant women is due population. This is because of metabolic disturbances, poor to overweight and obesity. (3) Gestational diabetes mellitus glycemic control, and other comorbidities. Many studies found (GDM) is a type of diabetes that develops during pregnancy and preterm birth as a complication of gestational diabetes mellitus, is characterised by hyperglycemia and decreased insulin but only a few studies evaluated the risk factors for preterm sensitivity. Undiagnosed or undertreated GDM can lead to delivery in these patients. Also, few studies are concentrating on significant maternal & foetal complications. GDM screening the outcomes of preterm babies of gestational diabetes (GDM) can be done by 75g oral glucose and measuring plasma glucose mothers. Additionally, the maternal complications and mortality 2 hours after ingestion (Oral Glucose Tolerance Test) between of preterm babies of mothers with GDM have not been 24 and 28 weeks of pregnancy. (4) Management involves established. As a result, this study aimed to study the risk factors following a proper diet, exercising, making lifestyle changes, associated with preterm deliveries in mothers with GDM, and and using insulin as needed. It's essential to control blood sugar the complications and mortality in preterm infants born to

baby. These issues include large for gestational age babies, Department of Obstetrics and Gynecology of Shri including macrosomia (5), which can cause complications Shankaracharya Institute of Medical Sciences, Durg. The during delivery, such as prolonged and obstructed labour, and an institute's ethics committee approves the study. This study increased likelihood of cesarean delivery. (6) Additionally, includes 640 pregnant women who started antenatal visits GDM can result in preterm birth and pregnancy-induced before 24 weeks of gestation and underwent GDM screening per the institutional guideline from Aug 2022 to October 2023. The cases are preterm birth in women with GDM, and controls are preterm birth in women without GDM. The sample size was calculated based on the estimated proportion of preterm delivery of 20% in GDM and 10% in those without GDM. So, at least 128 cases and 509 controls at a 95% confidence level and 80% power, the ratio of control to cases 4, and the least extreme odds ratio of 2.25. Roughly 130 cases and 510 controls were randomly selected. Inclusion criteria were patient consistency with the American Diabetes Association diagnostic criteria for GDM in 2019 (2), singleton pregnancy and complete clinical records. Exclusion criteria were in vitro fertilisation (IVF), multiple pregnancies, mothers with associated comorbidities (type 1 diabetes, type 2 diabetes, chronic respiratory diseases, neoplasms, gastrointestinal, hepatic, infectious tract diseases, and heart disease) and newborns with congenital anomalies or metabolic disorders.

An oral glucose tolerance test (OGTT) is performed to diagnose GDM. At first, a venous blood sample is taken on an empty stomach in the morning. Then, 75 grams of glucose dissolved in 300 ml water and taken orally. Afterwards, blood samples are taken at 1 hour and 2 hours after glucose ingestion. Plasma glucose is estimated by the GOD-POD method. The first testing was done at the antenatal visit as early as possible. The second testing was done 24-28 weeks of pregnancy if the first test was negative. A 4-week gap was maintained between the two tests. GDM is diagnosed if the fasting blood glucose level is >92 mg/dl, the 1-hour blood glucose level is >180 mg/dl and/or the 2-hour blood glucose level is >153 mg/dl. Insulin treatment started as required when the women had poor glycemic control after nutritional intervention.

The data was acquired from the hospital's medical records. The obstetric, antenatal natal, postnatal and neonatal history were taken. Risk factors for preterm delivery and GDM were assessed. Age 30 or older, family history of diabetes, BMI of 25 or more, previous GDM, previous macrosomia, previous unexplained fetal death, previous preterm delivery and pregnancy-induced hypertension were the risk factors. Preterm delivery was defined as a baby born before 37 completed weeks of gestation. The data was analysed using SPSS software. In descriptive statistics, mean, standard deviation and percentages were calculated. As required, various risk factors were compared between cases and controls using a t-test and chisquare test. A multivariate logistic regression analysis was used to determine if GDM was independently associated with preterm delivery. Odds ratio (OR) and 95% confidence intervals (CI) were estimated. P value < 0.05 was considered statistically significant.

The neonatal outcomes were calculated using problems such as neonatal sepsis, neonatal jaundice, hypoglycemia (blood glucose level <40 mg/dl), respiratory distress syndrome (RDS) and neonatal mortality. Diagnosis of neonatal sepsis, neonatal jaundice and hypoglycemia was based on clinical and laboratory criteria. RDS was diagnosed through clinical and radiological criteria.

OBSERVATIONS AND RESULTS

Table I Maternal risk factors for preterm deliveries

Table 1 Material risk factors for preterin denvertes				
Maternal Risk factors	Cases	ses Controls		
	(n = 130)	(n = 510)	value	
$AGE \ge 30 \text{ years}$	112 (86%)	363 (71%)	< 0.001	

BMI \geq 25	82 (63%)	242 (47%)	< 0.01
Previous Abortions	11 (8.5%)	41 (8%)	0.87
Nulliparity	42 (32%)	175 (34%)	0.67
Family history of DM	40(31%)	163(32%)	0.79
Previous GDM	3(2.3%)	5(0.98%)	0.37
PROM	28(21.5%)	127(24.9)	0.46
Eclampsia	3 (2.3%)	3 (0.59%)	0.15
Chronic Hypertension	12 (9.2%)	34 (6.7%)	0.31
Preeclampsia	4 (3.1%)	15 (2.9%)	1
Previous macrosomia	2 (1.5%)	8 (1.6%)	1
Previous neonatal death	3 (2.3%)	7 (1.4%)	0.43
Prior preterm birth	12 (9.2%)	19 (3.7%)	<0.01
Cesarean delivery	73 (56%)	257 (50%)	0.24
Vaginal delivery	57 (44%)	253 (50%)	

Table I shows maternal risk factors for preterm delivery in cases and controls. Age \geq 30 years (86% vs 71% p-value <0.001), BMI \geq 25 (63% vs 47% p-value <0.01), and prior preterm birth (9.2% vs 3.7% p-value <0.01) were more in cases than controls.

Table II Logistic Regression Analysis of Maternal Risk Factors

Risk factors	Odds-Ratio (95%CI)	P value
AGE≥ 30 years	2.48 [1.47-4.39]	<0.01
BMI ≥ 25	1.77 [1.18-2.69]	< 0.01
Previous Abortions	1.36 [0.607-2.89]	0.43
Preeclampsia	0.542 [0.111-1.90]	0.38
Eclampsia	3.65 [0.491-30.1]	0.2
Hypertension	1.31 [0.599-2.72]	0.48
Family history of DM	0.658 [0.391-1.08]	0.1
Previous gdm	3.13 [0.587-14.3]	0.15
Nulliparity	0.877 [0.565-1.37]	0.56
Prior preterm birth	2.32 [0.999-5.21]	0.043

Table II shows a multivariate logistic regression analysis of maternal and neonatal risk factors. Age \geq 30 (OR: 2.48,95%CI:1.47-4.39, p<0.01), BMI \geq 25(OR: 1.77, 95% CI: 1.18-2.69, p<0.01) and prior preterm birth (OR:2.32,95%CI:0.999-5.21,p=0.043) are all associated with risk of preterm deliveries in mother with gestational diabetes.

Table III Neonatal risk factors for preterm deliveries

Table III Neonatal risk factors for preterm deliveries			
Neonatal Risk	Cases	Controls	P
Factors	(n = 130)	(n = 510)	value
Baby Birth Weight,	2365 (583)	2307 (555)	0.31
mean (sd) (grams)			
Extremely low birth	1(0.77%)	11(2.2%)	0.48
weight			
Very low birth	8(6.2%)	36(7.1%)	0.72
weight			
Low birth weight	68(52%)	259(51%)	0.76
Normal weight	53(41%)	204(40%)	0.87
Gestation, mean	34.5 (1.87)	34.5 (2.18)	0.81
(sd) (Weeks)			
Extremely preterm	1(0.77%)	10(2%)	0.7
Very Preterm	13(10%)	41(8%)	
Moderate preterm	12(9.2)	46(9%)	0.94
Late preterm	104(80%)	413(81%)	0.8

Large for	8(6.2%)	11(2.2%)	0.035
gestational age			
NICU Admission	40 (31%)	163 (32%)	0.79
Female	59 (45%)	277 (54%)	
Male	71 (55%)	233 (46%)	0.069
Apgar Score 1min,	8.26 (1.47)	8.21 (1.51)	0.74
mean (sd)			
Apgar Score 5min,	9.45 (0.890)	9.30 (1.13)	0.12
mean (sd)			

Table II shows Neonatal risk factors in cases and controls. There were no differences between the mean birth weight and gestational age. There were more low birth weights in both groups. There were more late preterms in both cases (80%) and controls (81%). Macrosomia was more common in cases than controls (6.2% vs 2.2%, p=0.035). Male babies were more likely to be in GDM cases than female babies (55% vs 45%).

Table IV Neonatal outcomes among preterm infants

Morbidities	Cases (n=130)	Controls (n=510)	P value
Sepsis	10(7.69%)	36(7%)	0.95
RDS	35(26.9%)	89(17.4%)	0.02
Hypoglycemia	37(28.4%)	100(19.6%)	0.03
Hyperbilirubin imea	39(30%)	148(29%)	0.91
Mortality	7(5.4%)	23(4.5%)	0.85

Table IV shows neonatal outcomes among preterm infants. RDS (26.9% vs 17.4%, P=0.02) and Hypoglycemia (28.4% vs 19.6%, P=0.03) are more common morbidities in cases. There is no difference between the mortality among cases and controls.

DISCUSSION

Preterm birth can cause a wide variety of health problems and dangerous complications to babies. Preterm birth can cause respiratory distress, lung injury, sepsis, heart diseases, intestinal problems, Intracranial bleeding, and lifelong disorders like cerebral palsy (1-3). Therefore, it is necessary to know the fundamental character of preterm delivery in gestational diabetes mellitus because this is very important for the prevention of an uneventful pregnancy. Currently, gestational diabetes mellitus (GDM) is on a rising trend and obesity and sedentary lifestyles are important risk factors. Previous studies found that perinatal complications were higher in diabetic mothers as compared to the general population.

Many studies have shown that advanced maternal age is associated with an increased risk of preterm delivery in GDM mothers. Zhang et al. compared women with GDM aged 25–29; women with GDM aged 35–44 have a significantly higher risk of preterm birth. (9) Another study found that women with GDM are more likely to experience spontaneous preterm birth than women without GDM. (10) Fuchs et al. found that the risk of preterm birth is lowest for women aged 30–34 and highest for women over 40. (11) In our research, age \geq 30 (OR: 2.48, 95% CI: 1.47-4.39, p<0.01) was associated with an increased risk of preterm delivery. Many studies found a pre-conceptional BMI of 25 or higher (OR: 1.77, 95% CI: 1.18-2.69, p<0.01) is one of the risk factors for preterm birth in pregnant women with GDM. (10, 12, 13) In our research, pre-conceptional BMI \geq 25 was

associated with an increased risk of preterm delivery. A history of preterm birth is a significant risk factor for a subsequent preterm birth, regardless of the cause of the first preterm birth. A shorter gestational period in the first pregnancy increases the risk of preterm birth and early-term birth in subsequent pregnancies. (14,15)Also, previous preterm birth and GDM independently increased the risk of spontaneous preterm delivery. (10) Similarly, our study found previous preterm birth was associated with preterm delivery in GDM. Multivariate analysis indicated that previous preterm birth increases the risk of preterm birth by 2.32 times (95% CI: 0.99-5.1, p=.043).

In our research, we found that preterm large for gestational age (LGA) babies born to mothers with gestational diabetes mellitus (GDM) are more as compared to preterm babies born to mothers without GDM. (6.2% vs 2.2%, p=0.035). Mothers with GDM have a higher chance of LGA babies. According to a study, the prevalence of LGA newborns in mothers without GDM was 7.7% to 12.7% compared to mothers with GDM, which was 13.6% to 22.3%. The increased risk of macrosomia and LGA in GDM is mainly due to the mother's increased insulin resistance. Other factors that contribute to macrosomia include maternal obesity and poorly controlled diabetes. (17) Controlling maternal weight and managing GDM promptly can help reduce the prevalence of macrosomia and LGA babies. Regular exercise and eating a healthy diet can also help reduce the risk of complications.

In our study, we found neonates born to GDM mothers have a higher rate of complications. However, our study did not observe significant differences between the two groups regarding newborn sex, gestational age, birth weight, and Apgar score. There was a higher number of male babies in cases than female babies (55% vs 45%). Although it is not clinically significant (p=0.069), it denotes male preponderance in babies of GDM mothers. A systematic review and meta-analysis found that women carrying a male fetus have a 3-4% higher relative risk of GDM than women carrying a female fetus. (18) Our study results indicated that gestational diabetes mellitus (GDM) is linked to a higher risk of respiratory distress syndrome (RDS) in preterm infants (P=0.02). Respiratory distress syndrome (RDS) is more common in newborns of diabetic mothers than in normal mothers. (19, 20) RDS is a leading cause of perinatal mortality and morbidity. It's caused by a lack of surfactant in the lungs, a foamy substance that helps the lungs expand so newborns can breathe. Maternal diabetes can lead to hyperglycemia and hyperinsulinism in the fetus, which disrupts the production and function of surfactants. Surfactant is necessary for lung maturation. (21) Fetal lung underdevelopment: GDM can cause fetal underdevelopment, leading to immediate respiratory distress in newborns. (22)In our study, it was found that preterms born to diabetic mothers had a higher incidence of hypoglycemia. (P=0.03). Hypoglycemia is more common in newborns of diabetic mothers because the mother's high blood sugar levels cause the fetus to produce too much insulin. (23) Maternal hyperglycemia, fetal hyperinsulinism and insufficient glucose supply can lead to hypoglycemia in newborns. After birth, inadequate glucose supply can increase the risk of hypoglycemic shock if not appropriately managed. This can lead to cerebral insult and even death (24).

The strengths of this study may include the consistent diagnosis 4. of GDM according to the guidelines. All samples selected were high-risk pregnancy and delivery. 3rd. New Delhi: Elsevier; randomised correctly; therefore, the biases are minimal. 2008. Bleeding during pregnancy; pp. 323-57. Chapter 13. However, there are also some limitations to consider. The data 5. obtained from a tertiary care hospital may not apply to the Hackman R, Mazor M. Incidence, obstetric risk factors and general population. Also, there may be differences in GDM pregnancy outcome of preterm placental abruption: A screening and newborn management across different settings. retrospective analysis. J Matern Fetal Neonatal Med. Further studies with large samples and a prospective nature are 2002;11:34–9. needed for the relationship between GDM and preterm birth. In 6. the near future, if more studies give us significant evidence, we Hoffman BL, Casey BM, Spong CY, editors. Williams can frame a program to decrease maternal and neonatal Obstetrics, 25e. McGraw Hill; 2018. Obstetrical Hemorrhage. morbidity and mortality.

Conclusions

Mothers with GDM are prone to preterm delivery, with Maternal and child health; pp. 445-7. significant risk factors being age 30, BMI 25, prior preterm & birth and LGA. GDM also increases the risk of some adverse 2016 Nov;5(11):3972-3977. outcomes, such as RDS and neonatal hypoglycemia.

References

- Rudra A, Chatterjee S, Sengupta S, Wankhede R, Nandi B, Maitra G, Mitra J. Management of obstetric haemorrhage. Middle East J Anaesthesiol. 2010;20:499–507.
- Mustafa Adelaja L, Olufemi Taiwo O. Maternal and 2. fetal outcome of obstetric emergencies in a tertiary health institution in South-Western Nigeria. ISRN Obstet Gynecol. 2011;2011:160932.
- 3. Kedar K, Uikey P, Pawar A, Choudhary A. Maternal and fetal outcome in antepartum haemorrhage: A study at tertiary care hospital. Int J Reprod Contracept Obstet Gynecol. 2016;5:1386–94.

- Arias F, Daftary SN, Bhide AG, et al. Practical guide to
- Sheiner E, Shoham-Vardi I, Hadar A, Hallak M,
- Cunningham F, Leveno KJ, Bloom SL, Dashe JS,
- Park K. Park's textbook of preventive and social medicine. 19th. Banarasi Das Bhanot; Jabalpur: 2007.
- Tyagi P et al. Int J Reprod Contracept Obstet Gynaecol.
- Majumder S et al. Int J Reprod Contracept Obstet Gynaecol.2015 Dec;4(6):1936-193914.
- 10. Mustafa Adelaja L, Olufemi Taiwo O. Maternal and fetal outcome of obstetric emergencies in a tertiary health institution in South-Western Nigeria. ISRN Obstet Gynecol 2011;2011:160932.
- Purohit A et al. IOSR-JDMS e-ISSN:2279-0853,p-ISSSN:2279- 0861.Volume 13, Issue 5 Ver.III(May.2014), PP 13-1610.
- 12. Samal SK et al. Int J Reprod Contracept Obstet Gynaecol .2017 Mar; 6(3):1025-102912.
- Wasnik SK, Naiknaware SV. Antepartum haemorrhage: Causes & its effects on mother and child: An evaluation. Obstet Gynecol Int J 2015;3:255-8.