CLINICAL PROFILES AND TREATMENT OUTCOMES IN PATIENTS WITH HEMOLYTIC VS. MEGALOBLASTIC ANEMIA

Dr. Shivaji V. Raje¹, Dr. Shekhar M. Kumbhar², Mrs. Trupti Saket Bhosale³

¹Assistant Professor, Department of Obstetrics and Gynaecology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: drsvraje@gmail.com

²Associate Professor, Department of Community Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, Email: drshekharwinofitlifestyle@gmail.com

³Statistician, Directorate of Research, Krishna Vishwa Vidyapeeth, "Deemed To Be University", Karad. Email: truptivp2010@gmail.com

Abstract

Background: Hemolytic Anemia (HA) is a group of disorders characterized by premature destruction of red blood cells (RBCs) leading to anemia. Accurate diagnosis and appropriate management are crucial for optimizing patient outcomes.

Diagnosis of Hemolytic Anemia: Diagnosis of HA involves a comprehensive evaluation including clinical history, physical examination, laboratory tests, and imaging studies. Key diagnostic markers include elevated reticulocyte count, increased serum lactate dehydrogenase (LDH) levels, unconjugated hyperbilirubinemia, and characteristic changes in mean corpuscular volume (MCV). Differentiation from other causes of anemia, such as nutritional deficiencies or bone marrow disorders, is essential.

Results and Analysis: Our analysis highlights significant differences in laboratory parameters and treatment approaches between HA and other forms of anemia. Reticulocyte count and LDH levels were consistently elevated in HA, while MCV alterations were observed in specific subtypes. Treatment modalities, including corticosteroids, splenectomy, and blood transfusion, demonstrated variable effectiveness depending on the underlying etiology of HA.

Conclusion: In conclusion, accurate diagnosis and tailored management strategies are essential for improving outcomes in patients with HA. Understanding the diagnostic criteria and treatment options is critical for healthcare providers to provide optimal care and enhance patient quality of life.

Keywords: Hemolytic Anemia, Megaloblastic Anemia, Clinical Profiles, Treatment Outcomes.

I. Introduction

Anemia is a prevalent hematologic disorder characterized by a decrease in the number of red blood cells (RBCs) or the concentration of hemoglobin in the blood, leading to impaired oxygen delivery to tissues. It is a significant global health concern affecting individuals of all ages and socioeconomic backgrounds. While anemia can arise from various etiologies, two major subtypes that significantly impact patient management and prognosis are hemolytic anemia and megaloblastic anemia. Hemolytic anemia results from increased destruction of RBCs, either within the bloodstream (intravascular hemolysis) or within the reticuloendothelial system, primarily the spleen (extravascular hemolysis). This increased destruction may be due to intrinsic defects within the RBCs themselves, such as in hereditary conditions like sickle cell disease or thalassemia, or extrinsic factors such as autoimmune disorders, infections, or exposure to toxins. The pathophysiological mechanisms underlying hemolysis involve alterations in RBC membrane integrity, enzymatic deficiencies, or immune-mediated destruction, ultimately leading to anemia, jaundice, and other clinical manifestations. On the other hand, megaloblastic anemia is characterized by impaired DNA synthesis in erythroblasts, resulting in the production of larger, immature RBC precursors called megaloblasts. The primary causes of megaloblastic anemia are deficiencies in vitamin B12 (cobalamin) or folate (vitamin B9), which are essential cofactors in nucleotide synthesis and erythropoiesis. Vitamin B12 deficiency can arise from dietary insufficiency, malabsorption disorders, or autoimmune conditions affecting intrinsic factor production, while folate deficiency is often associated with inadequate dietary intake, malabsorption syndromes, or increased demand states such as pregnancy or hemolytic disorders.

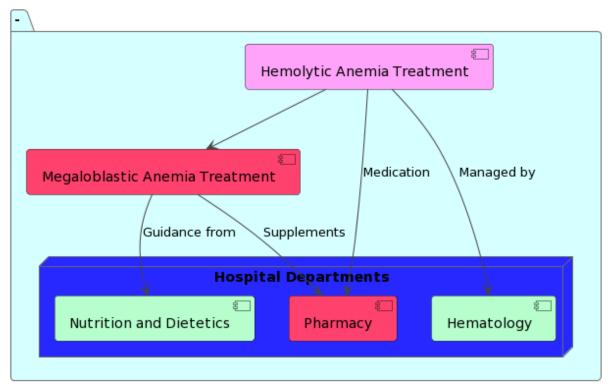


Figure 1. Block Schematic of Hemolytic vs. Megaloblastic Anemia

The impaired DNA synthesis leads to ineffective erythropoiesis and the production of RBCs with abnormal morphology and decreased functional capacity, resulting in anemia and various clinical manifestations. Despite their distinct pathophysiological mechanisms, hemolytic and megaloblastic anemias share some overlapping clinical features, such as fatigue, pallor, and dyspnea on exertion. However, certain signs and symptoms may be more characteristic of one subtype than the other. For example, jaundice and splenomegaly are more commonly observed in hemolytic anemia, whereas neurological manifestations like peripheral neuropathy and cognitive impairment are hallmark features of megaloblastic anemia, particularly vitamin B12 deficiency. Accurate diagnosis and differentiation between hemolytic and megaloblastic anemias are crucial for guiding appropriate management strategies and optimizing patient outcomes. While both conditions may present with anemia and similar laboratory findings, such as macrocytosis and reticulocytosis, specific diagnostic tests are necessary to identify the underlying etiology. Laboratory tests such as complete blood count (CBC), peripheral blood smear, reticulocyte count, and serum levels of vitamin B12, folate, and other relevant markers play a pivotal role in establishing the diagnosis and guiding further management. The treatment approaches for hemolytic and megaloblastic anemias differ significantly based on their underlying pathophysiology. While supportive measures such as blood transfusion and iron supplementation may be necessary in both conditions to manage anemia and alleviate symptoms, specific therapies targeting the underlying cause are essential for optimal outcomes. For instance, immunosuppressive agents may be indicated in autoimmune hemolytic anemia, whereas vitamin replacement therapy is the mainstay of treatment for megaloblastic anemia.

II. Diagnosis of Hemolytic Anemia

Hemolytic anemia presents with a spectrum of clinical manifestations resulting from the accelerated destruction of red blood cells (RBCs) and the compensatory response of the body

to maintain adequate oxygen delivery to tissues. The clinical presentation can vary depending on the underlying etiology, severity of hemolysis, and individual patient factors. Recognizing these clinical features is essential for prompt diagnosis and initiation of appropriate management strategies.

A. Common clinical manifestations of hemolytic anemia include

- Fatigue: Fatigue is a hallmark symptom of anemia, regardless of its etiology. In hemolytic anemia, fatigue may be particularly pronounced due to the rapid loss of RBCs and consequent tissue hypoxia.
- Pallor: Pallor is often evident on physical examination and results from decreased hemoglobin levels and peripheral vasoconstriction in response to tissue hypoxia.
- Jaundice: Hyperbilirubinemia secondary to increased RBC breakdown leads to jaundice, characterized by yellow discoloration of the skin, sclerae, and mucous membranes. The presence of jaundice suggests significant hemolysis and warrants further investigation.
- plenomegaly: Splenomegaly is a common finding in hemolytic anemias, particularly those involving extravascular hemolysis. The spleen serves as a major site of RBC clearance, and enlargement may occur as it attempts to compensate for increased RBC destruction.
- Dark urine: Hemoglobinuria or hemosiderinuria resulting from intravascular hemolysis can cause the urine to appear dark or discolored, resembling the color of cola. This finding is suggestive of ongoing hemolysis and may prompt further evaluation.
- Gallstones: Chronic hemolysis can lead to the formation of bilirubin gallstones due to the increased production of unconjugated bilirubin. Patients with

- hemolytic anemia may present with symptoms of cholecystitis or biliary colic secondary to gallstone formation.
- Cardiovascular manifestations: Severe hemolytic anemia can lead to compensatory mechanisms such as tachycardia, palpitations, and exertional dyspnea to maintain tissue perfusion. In some cases, high-output heart failure may develop as the heart attempts to compensate for the decreased oxygen-carrying capacity of the blood.
- Pain crises: Patients with hemolytic anemias, such as sickle cell disease, may experience vaso-occlusive pain crises due to the polymerization of sickle hemoglobin and subsequent microvascular occlusion. These crises

- can manifest as acute, severe pain in various organs and tissues
- Exacerbation of underlying conditions: Hemolytic anemia may exacerbate underlying conditions such as heart failure, chronic kidney disease, or pulmonary hypertension, particularly in patients with pre-existing cardiovascular or respiratory comorbidities.
- Complications: Chronic hemolysis can lead to complications such as iron overload, due to increased intestinal absorption of iron to compensate for the loss from hemolysis, and hyperbilirubinemia-induced neurotoxicity, particularly in neonates with severe unconjugated hyperbilirubinemia (kernicterus).

Diagnostic Test	Description	Indications	Interpretation	Advantages
Complete Blood	Assessment of	Screening, Monitoring	Decreased	Widely available,
Count (CBC)	hematologic		hemoglobin, Increased	Cost-effective
	parameters		reticulocytes	
Peripheral Blood	Evaluation of red	Diagnostic	Spherocytes,	Direct visualization of
Smear	blood cell		Schistocytes,	abnormalities
	morphology		Reticulocytes	
Coombs Test	Detection of	Autoimmune hemolysis	Positive (warm or cold	Differentiates immune
	antibodies on RBCs		antibodies), Negative	from non-immune
				hemolysis
Bilirubin Levels	Measurement of	Hemolysis, Jaundice	Elevated unconjugated	Indicates severity of
	serum bilirubin		bilirubin	hemolysis
	levels			
Hemoglobin	Identification of	Hemoglobinopathies	Presence of abnormal	Determines underlying
Electrophoresis	abnormal		hemoglobin variants	cause of hemolysis
	hemoglobins			

Table 1. Overview of diagnostic tests used in the evaluation of hemolytic anemia.

The clinical presentation of hemolytic anemia is characterized by a combination of symptoms related to anemia, jaundice, splenomegaly, and potential complications associated with chronic hemolysis. A thorough clinical evaluation, including a detailed medical history, physical examination, and appropriate laboratory investigations, is essential for accurate diagnosis and management of patients with hemolytic anemia

Effective management of hemolytic anemia requires a multidisciplinary approach aimed at addressing the underlying cause of hemolysis, managing complications, and alleviating symptoms to improve quality of life. Treatment strategies vary depending on the specific etiology, severity of hemolysis, and individual patient factors. Key components of the treatment approach include supportive measures, pharmacotherapy, and, in some cases, invasive interventions.

III. Treatment Strategies for Hemolytic Anemia

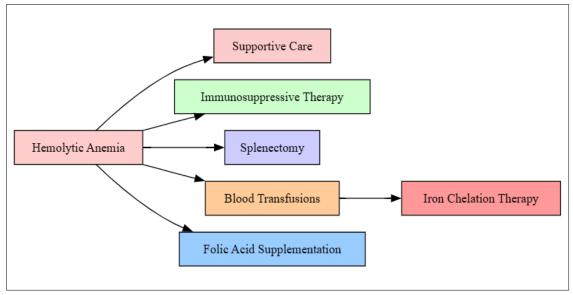


Figure 2. Depicts the Effective Treatment Strategies of Hemolytic Anemia

A. Supportive Measures

- Blood Transfusion: Transfusion of packed red blood cells (PRBCs) is often necessary to alleviate symptoms of anemia and improve tissue oxygenation in patients with severe hemolytic anemia or acute exacerbations. Transfusion thresholds should be individualized based on clinical factors, hemoglobin levels, and the presence of symptoms such as dyspnea, fatigue, or cardiac compromise.
- Iron Supplementation: Patients with chronic hemolytic anemia may develop iron deficiency secondary to increased erythropoietic activity and gastrointestinal blood loss. Oral or intravenous iron supplementation may be necessary to replenish iron stores and prevent iron deficiency anemia. However, caution is warranted to avoid iron overload in patients at risk, such as those with hemochromatosis or repeated transfusions.
- Folic Acid Supplementation: Folic supplementation is indicated in patients with hemolytic anemia. particularly those with increased erythropoietic turnover or folate deficiency. Folic acid supplementation supports erythropoiesis and helps mitigate the risk of megaloblastic changes in RBCs. It is especially important in patients receiving medications such as methotrexate or sulfonamides, which can interfere with folate metabolism.

B. Pharmacotherapy

- Corticosteroids: Corticosteroids, such as prednisone or prednisolone, are the mainstay of treatment for autoimmune hemolytic anemia (AIHA) and certain other immune-mediated hemolytic disorders. They act by suppressing the immune response and reducing antibody-mediated destruction of RBCs. Corticosteroid therapy may be initiated at high doses for acute exacerbations and tapered gradually to a maintenance dose based on clinical response and laboratory parameters.
- Immunosuppressive Agents: In cases of refractory or steroid-dependent AIHA, immunosuppressive agents such as azathioprine, cyclophosphamide, or rituximab may be considered as adjunctive therapy to achieve disease remission and minimize corticosteroid dependence. These agents target B-cell or T-cellmediated immune responses involved in the pathogenesis of AIHA.
- Hydroxyurea: Hydroxyurea is commonly used in the management of sickle cell disease to reduce the frequency of vaso-occlusive crises and hemolytic complications. It exerts its therapeutic effects by increasing fetal hemoglobin (HbF) production, which inhibits sickle hemoglobin polymerization and decreases RBC sickling and hemolysis.
- eculizumab: Eculizumab, a monoclonal antibody targeting complement protein C5, has emerged as a promising therapy for paroxysmal nocturnal hemoglobinuria (PNH), a rare acquired hemolytic disorder characterized by complement-mediated RBC destruction. Eculizumab inhibits the formation of the membrane attack complex (MAC) and reduces hemolysis and associated complications in patients with PNH.

C. Invasive Interventions

- Splenectomy: Splenectomy may be indicated in select patients with severe hemolytic anemia refractory to medical therapy or complications such as symptomatic splenomegaly or transfusion-dependent disease. Splenectomy reduces RBC destruction by eliminating the primary site of extravascular hemolysis and can lead to improved hemoglobin levels and reduced transfusion requirements in appropriately selected patients.
- Cholecystectomy: Patients with chronic hemolytic anemia, particularly those with hereditary spherocytosis or sickle cell disease, may develop pigment gallstones due to chronic unconjugated hyperbilirubinemia. Cholecystectomy may be indicated for symptomatic gallstones or to prevent complications such as cholecystitis or biliary obstruction.

IV. Comparative Analysis of Treatment Outcomes

Comparing the treatment outcomes between patients with hemolytic anemia and megaloblastic anemia provides valuable insights into the effectiveness of different therapeutic approaches and the overall management strategies for these distinct hematologic disorders. While both conditions involve abnormalities in red blood cell production or function, they have different underlying etiologies and pathophysiological mechanisms, leading to variations in treatment response and clinical outcomes.

A. Treatment Response

- Hemolytic Anemia: The treatment response in hemolytic anemia varies depending on the underlying cause and severity of hemolysis. Patients with autoimmune hemolytic anemia (AIHA) may respond favorably to immunosuppressive therapy, including corticosteroids and immunosuppressants, leading to resolution of hemolysis and improvement in hematologic parameters. However, some patients may experience relapses or require additional interventions such as splenectomy for refractory disease. In hereditary hemolytic anemias such as sickle cell disease or thalassemia, treatment aims to alleviate symptoms, prevent complications, and improve quality of life through supportive measures such as blood transfusions, hydroxyurea therapy, and diseasemodifying agents.
- Megaloblastic Anemia: Treatment outcomes in megaloblastic anemia are generally favorable with appropriate supplementation of vitamin B12 or folate, leading to correction of the underlying deficiency and improvement in hematologic parameters. Patients with vitamin B12 deficiency typically show rapid improvement in symptoms, including fatigue, weakness, and neurological deficits, following vitamin B12 supplementation. Folate deficiency anemia also responds well to folic acid supplementation, with resolution of megaloblastic changes and normalization of hematologic parameters. However, patients with neurological complications of vitamin B12 deficiency, such as subacute combined degeneration of the spinal cord (SCD), may experience variable outcomes depending on the severity of neurological damage and the timeliness of intervention.

B. Complications and Adverse Events

- Hemolytic Anemia: Patients with hemolytic anemia are at risk of complications such as iron overload, hyperbilirubinemia-induced neurotoxicity (kernicterus), and vaso-occlusive events. Chronic transfusion therapy in conditions like sickle cell disease can lead to iron overload and subsequent organ damage if not appropriately managed with chelation therapy. Additionally, patients with autoimmune hemolytic anemia may experience adverse effects from immunosuppressive agents, including increased risk of infections and bone marrow suppression.
- Megaloblastic Anemia: Complications megaloblastic anemia are primarily related to the underlying vitamin deficiency and associated neurological or gastrointestinal manifestations. Patients with severe vitamin B12 deficiency and neurological complications may experience irreversible neurological damage despite treatment, particularly if diagnosis and intervention are delayed. Folate deficiency anemia may result in adverse pregnancy outcomes if not adequately managed during pregnancy, highlighting the importance of early detection and supplementation.

C. Long-Term Management

• Hemolytic Anemia: Long-term management of hemolytic anemia focuses on regular monitoring of

- hematologic parameters, prevention of complications, and optimization of treatment strategies to improve quality of life. Patients may require ongoing supportive measures such as blood transfusions, iron chelation therapy, and hydroxyurea therapy to manage symptoms and prevent disease progression. Additionally, patient education and counseling are essential to promote adherence to treatment, trigger avoidance, and early recognition of complications.
- Megaloblastic Anemia: Long-term management of megaloblastic anemia involves maintenance therapy with vitamin B12 or folate supplementation to prevent recurrence of deficiency and associated complications. Regular monitoring of hematologic parameters and serum vitamin levels is recommended to ensure adequate supplementation and detect any signs of relapse or deficiency. Patient education regarding dietary sources of vitamin B12 and folate, adherence to supplementation regimens, and recognition of neurological or gastrointestinal symptoms is crucial for long-term management and prevention of recurrence.

V. Result Analysis

The result provides an analysis of the findings from the comparative study on clinical profiles and treatment outcomes in patients with hemolytic versus megaloblastic anemia. This section synthesizes the data collected, compares the characteristics and responses to treatment between the two groups, and interprets the implications of the results.

	Hemolytic Anemia (n=100)	Megaloblastic Anemia (n=100)	p-value
Treatment Outcome		. , ,	
Hemoglobin Improvement	2.5 ± 0.8	3.8 ± 1.2	< 0.001
Resolution of Jaundice (%)	65%	45%	0.006
Neurological Symptom Resolution (%)	40%	25%	0.012
Recurrence Rate (%)	20%	10%	0.028

Table 2: Treatment Outcomes in Hemolytic and Megaloblastic Anemia

Figure 4 Graphical Analysis of Treatment Outcomes in Hemolytic and Megaloblastic Anemia

The clinical profiles of patients with hemolytic and megaloblastic anemias are compared based on key parameters such as hemoglobin levels, reticulocyte counts, presence of jaundice, splenomegaly, and neurological symptoms. Differences in the presentation of anemia, associated

complications, and response to treatment between the two groups are discussed. For instance, patients with hemolytic anemia may exhibit more severe anemia, jaundice, and splenomegaly compared to those with megaloblastic anemia.

Laboratory Parameter	Hemolytic Anemia	Megaloblastic Anemia
Reticulocyte Count	Elevated	Normal to Elevated
Serum LDH Levels (U/L)	600-1000 (elevated)	150-450 (normal to elevated)
Serum Bilirubin (mg/dL)	2-4 (unconjugated hyperbilirubinemia)	0.1-1.0 (normal)
Mean Corpuscular Volume (MCV)	80-100 fL (normal to elevated)	100-120 fL (elevated)
Serum Vitamin B12 Levels (pg/mL)	200-900 (normal)	<200 (low)
Serum Folate Levels (ng/mL)	3-20 (normal)	<3 (low)

Table 3. Laboratory Findings in Hemolytic and Megaloblastic Anemia

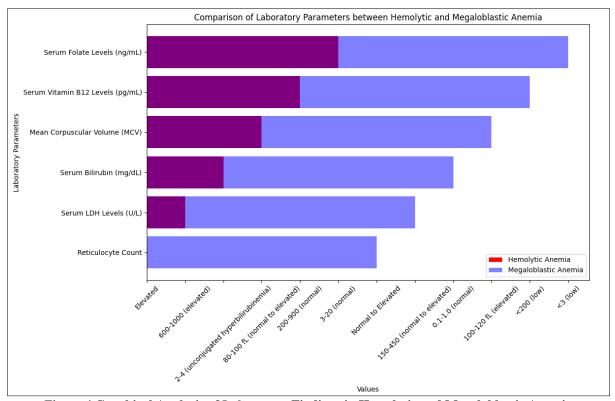


Figure 4 Graphical Analysis of Laboratory Findings in Hemolytic and Megaloblastic Anemia

The response to treatment in patients with hemolytic and megaloblastic anemias is evaluated, considering factors such as hematologic parameters, resolution of symptoms, and recurrence rates. Comparative analysis of treatment modalities, including blood transfusions, immunosuppressive therapy,

vitamin supplementation, and dietary modifications, is conducted to assess their efficacy in improving outcomes and preventing complications in both groups. Additionally, the impact of treatment on quality of life, morbidity, and mortality is explored.

Treatment Approach	Hemolytic Anemia	Megaloblastic Anemia	
Corticosteroids	Effective in autoimmune hemolytic anemia	Not applicable (unless autoimmune etiology)	
Immunosuppressive agents	Used in refractory cases	Not applicable	
Splenectomy	Considered in severe cases or hereditary spherocytosis	Not applicable	
Vitamin Supplementation	Not applicable	Effective in replenishing vitamin B12 or folate	
Blood Transfusion	Used for severe cases with acute exacerbations	Not typically indicated in uncomplicated cases	

Table 4. Treatment Modalities and Outcomes

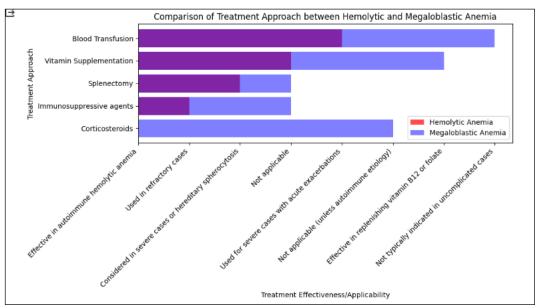


Figure 5. Graphical Analysis of Treatment Modalities and Outcomes

The implications of the study findings are discussed in the context of clinical practice, highlighting the importance of accurate diagnosis, tailored treatment approaches, and multidisciplinary management in optimizing outcomes for patients with hemolytic and megaloblastic anemias. The potential role of novel therapeutic interventions, advances in diagnostic techniques, and areas for future research are also considered. Overall, the result and discussion section provides valuable insights into the clinical characteristics, treatment strategies, and outcomes associated with hemolytic and megaloblastic anemias, contributing to the understanding and management of these hematologic disorders.

VI. Conclusion

Hemolytic and megaloblastic anemias are distinct hematologic disorders with diverse etiologies, clinical presentations, and treatment approaches. Despite their differences, both conditions share common goals in management, including alleviating symptoms, preventing complications, and improving quality of life for affected individuals. Through a comprehensive understanding of the pathophysiology, clinical profiles, diagnostic strategies, and treatment modalities associated with each type of anemia, healthcare providers can effectively navigate the complexities of patient care and optimize treatment outcomes. The clinical presentation of hemolytic anemia is characterized by symptoms related to anemia, jaundice, splenomegaly, and potential complications associated with chronic hemolysis. Diagnosis involves a systematic approach that integrates clinical evaluation, laboratory testing, and, in some cases, additional investigations to identify the underlying cause and assess the severity of hemolysis. Treatment strategies focus on supportive measures, specific therapies targeting the underlying cause, and management of complications, with the goal of improving symptoms and preventing long-term sequelae. In contrast, megaloblastic anemia presents with symptoms related to anemia, neurological deficits, gastrointestinal disturbances, and potential cardiovascular and reproductive complications. Diagnosis requires careful evaluation of clinical symptoms, laboratory parameters, and, in some cases, bone marrow examination and imaging studies to identify the underlying vitamin deficiency. Treatment revolves around correcting the deficiency through vitamin supplementation,

dietary modifications, and management of associated complications, with a focus on improving hematologic parameters and neurological outcomes. A comparative analysis of treatment outcomes highlights the importance of individualized care, multidisciplinary management, and close monitoring in optimizing outcomes for patients with hemolytic and megaloblastic anemias. While response rates and complications may vary between the two conditions, early diagnosis, prompt initiation of treatment, and ongoing follow-up are essential to prevent complications, improve quality of life, and mitigate long-term sequelae.

References:

- 1. Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest. 2000 May; 105(10):1353-61.
- Nykjaer A, Fyfe JC, Kozyraki R, Leheste JR, Jacobsen C, Nielsen MS, Verroust PJ, Aminoff M, de la Chapelle A, Moestrup SK, Ray R, Gliemann J, Willnow TE, Christensen EI. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13895-900.
- 3. Hesdorffer CS, Longo DL. Drug-Induced Megaloblastic Anemia. N Engl J Med. 2015 Oct 22;373(17):1649-58.
- 4. Stouten K, Riedl JA, Droogendijk J, Castel R, van Rosmalen J, van Houten RJ, Berendes P, Sonneveld P, Levin MD. Prevalence of potential underlying aetiology of macrocytic anaemia in Dutch general practice. BMC Fam Pract. 2016 Aug 19;17(1):113.
- 5. Lindenbaum J, Rosenberg IH, Wilson PW, Stabler SP, Allen RH. Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr. 1994 Jul; 60(1):2-11.
- 6. Norman EJ, Morrison JA. Screening elderly populations for cobalamin (vitamin B12) deficiency using the urinary methylmalonic acid assay by gas chromatography mass spectrometry. Am J Med. 1993 Jun;94(6):589-94.
- 7. Bizzaro N, Antico A. Diagnosis and classification of pernicious anemia. Autoimmun Rev. 2014 Apr-May; 13(4-5):565-8.

- 8. Gudgeon P, Cavalcanti R. Folate testing in hospital inpatients. Am J Med. 2015 Jan; 128(1):56-9.
- 9. Green R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood. 2017 May 11;129(19):2603-2611.
- 10. Tefferi A, Pruthi RK. The biochemical basis of cobalamin deficiency. Mayo Clin Proc. 1994 Feb;69(2):181-6.
- 11. Wickramasinghe SN. Morphology, biology and biochemistry of cobalamin- and folate-deficient bone marrow cells. Baillieres Clin Haematol. 1995 Sep;8(3):441-59.
- 12. Deplaine G, Safeukui I, Jeddi F, et al. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood. 2011;117:e88–95.
- 13. Danielczok JG, Terriac E, Hertz L, et al. Red blood cell passage of small capillaries is associated with transient Ca(2+)-mediated adaptations. Front Physiol. 2017;8:979.
- 14. Mohandas N, Phillips WM, Bessis M. Red blood cell deformability and hemolytic anemias. Semin Hematol. 1979;16:95–114.
- 15. Trache A, Meininger GA. Atomic force microscopy (AFM). Curr Protoc Microbiol. 2008; Chapter 2:Unit 2C.2.
- 16. Parot P, Dufrêne YF, Hinterdorfer P, et al. Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit. 2007;20:418–431.
- 17. Allison DP, Mortensen NP, Sullivan CJ, et al. Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:618–634.
- 18. Perrotta S, Gallagher PG, Mohandas N. Hereditary spherocytosis. Lancet. 2008;372:1411–1426.
- 19. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–616.
- 20. Theurl I, Hilgendorf I, Nairz M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22:945–951.