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Abstract  

The synthesis techniques for C-dots are covered in the review including the template method, which entails calcining 

the necessary C-dots in an appropriate template before etching to eliminate supports. The sector's difficulties are 

mentioned, such as the absence of a scalable and systematic synthesis approach for producing high-quality C-dots 

with desired topologies. It is necessary to systematically investigate how precursors and reaction conditions affect 

the performance of C-dots because their precise formation process, nucleation process, and response mechanism 

are not entirely understood. The remarkable potential of C-dots for a diversity of applications is emphasized within 

this review. In conclusion, it also highlights the carbon dots' extraordinary optical characteristics, exceptional 

biocompatibility, affordability, and simplicity of customization and functionalization. The potential of C-dots-based 

material, also emphasizes the need for additional research to address the issues and establish regulated synthetic 

methods, large-volume manufacturing, and enhanced comprehension of the structure-performance connection. 
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1. Introduction:  

Newly included in the group of fluorescent carbon materials, 

carbon dots (Carbon dots) have a diameter of not more than 10 

nm. They are positioned as viable substitutes for metal-based 

quantum dots due to their distinct makeup and biocompatibility 

[1]. C-Dots have attracted interest for applications such as 

biosensors [2], gene transduction [3], drug carriers [4-8], and 

bioimaging probes [9,10] because of their exceptional 

fluorescence qualities, high biocompatibility, and low toxicity. 

C-Dots remarkable fluorescence properties are very promising 

for analytical chemistry, particularly for biological and 

environmental sensing and imaging [2,10-16]. The term "carbon 

dots" (CDs) refers to quasi-0D carbon-based materials that are 

smaller than 20 nm in size. Their intrinsic fluorescence is what 

makes them unique. Fluorescent carbon nanoparticles were first 

reported in 2004 after they were unintentionally produced while 

purifying single-walled carbon nanotubes. Upon producing 

carbon particles through laser ablation of a carbon target, Sun et 

al., (2006) first categorized them as CDs; nevertheless, the 

quantum yield (QY) was Approximately 10% of these CDs were 

surface-passivated. [17,18]. The difficult preparation procedures 

and low QY of CDs hindered their advancement. The 

development of carbon dots (CDs) has been hindered by their 

low quantum yield (QY) and difficult preparation methods. 

Before 2013, Yang's group produced CDs which are like 

polymers with an amazing Quantum Yield of as much as 80% 

by using ethylenediamine and citric acid (CA) as precursors in a 

single hydrothermal step [19]. The QY with the greatest value 

among carbon-driven fluorescent compounds is this one. These 

CDs are adaptable; they can be used in printing inks or as 

operational nanocomposites. The user-friendly nature, high 

Quantum Yield, low level of toxicity, and strong protection 

against photobleaching displayed by Carbon Dots contributed to 

the spike in research interest.Currently, CDs are categorized into 

various groups according to their specific characteristics, micro- 

and nanostructures, and production procedures. As seen in 

Figure 1, the three main categories are carbonized polymer dots 

(CPDs), graphene quantum dots (GQDs), and carbon quantum 

dots (CQDs). By varying the graphene layer and degree of 

carbonization, connections between these categories can be 

formed, resulting in a range of linkages [20]. 

Carbonized polymer dots (CPDs) are a new class of fluorescent 

nanomaterials that combine organic polymer chains with a 

carbon core. Conversion of polymer monomers by techniques 

such as condensation, cross-linking, or mild carbonization is 

usually required for the synthesis of CPDs [21,22]. 

Condensation and cross-linking are crucial for the synthesis of 

CPDs because, in contrast to conventional carbon dots, they 

show little to no carbonization [23-28]. CPDs have unique 

qualities due to their unique chemical structure, such as strong 

emission, high yield, and enhanced oxygen levels, which lead to 

exceptional water solubility. 

 

 

 

 

 

   

 

 

 

 

 

 

 

Graphene quantum dots (GQDs) are relatively newest member 

of the graphene nanomaterial family. They have amazing optical 

and electrical capabilities and are composed of one or more 

graphene sheets that are nanometers in size. [29]. To create these 

0D nanomaterials, graphene sheets were hydrothermally 

combined in 2010 [30]. GQDs and graphene are comparable in 

that they have C, O, and H crystal structures in addition to 

hydroxyl, carboxyl, carbonyl, and epoxy surface groups [31]. 

Crystalline GQDs are primarily composed of sp2 hybridized 

carbon. Surface imperfections, zigzag or armchair edges, and 

quantum confinement provide GQDs with unique fluorescence 

properties that add to their luminosity [32-34]. Although GQDs 

typically have a size range of 3–20 nm, the highest size yet 

recorded is 60 nm [35]. Because of its exceptional qualities—

which include minimal cytotoxicity, exceptional H2O solubility, 

strong electrical conductivity, chemical steadiness, 

photoluminescence, low photobleaching, environmental 

benevolence, and optoelectronic characteristics—graphene 

quantum dots, or GQDs, have attracted a lot of interest from 

researchers [36]. Chemical stability and strong biocompatibility 

are also included in this list of qualities. Theranostics, 

photodynamic healing, photocatalysis, anticancer 

representatives, batteries made of lithium-ion, optoelectric 

detectors, flash memory apparatuses, solar panels, electronic 

screens, wrapping, LEDs, antibacterial properties, drug delivery, 

tissue engineering, hybrid capacitors, and batteries are just a few 

of the many applications where GQDs show enormous promise 

[37,38]. Target-specific and biocompatible, biologically derived 

GQDs are essential for the efficient management and treatment 

of several serious illnesses. Carbon quantum dots (CQDs) have 

attracted attention as fluorophores from all over the globe due to 

their simple synthesis, small size, exceptional photostability, 

great biocompatibility, up-conversion, tunable 

photoluminescence (PL), and chemical stability [39,40]. The 

nanoparticles known as carbon-based quantum dots (CQDs) 

exhibit a variety of surface passivation as a consequence of 

functionalization or modification [41]. CQDs can exist in both 

crystalline and amorphous forms. While sp3 hybridization has 

also been reported, sp2 carbon hybridization is the most common 

kind in CQDs. CQDs are classified as 0D nanostructures, and 

most of them are smaller than 10 nm in size. CQDs show about 

0.34 nm in terms of crystal lattice characteristics, which is 

consistent with the (002) graphite interlayer spacing [42]. 

Functionalization of CQDs can be achieved by using different 

surface groups. The water solubility of CQDs is attributed to the 

predominance of oxygen-containing functional groups, such as 

hydroxyl and carboxyl, on their surface [42]. Furthermore, these 

functional groups provide an advantage over graphene quantum 

dots (GQDs), which show poor solubility in common solvents, 

by facilitating the creation of stable colloids in polar organic 

solvents or aqueous solutions [43]. Surface groups of CQDs 

affect their fluorescence characteristics [42]. Many different 

types of carbon nanostructures exhibit fluorescence: graphene 

oxide

46], carbon nanotube quantum dots (CNT QDs) [47,48], 

nanodiamonds (NDs) [49,50], graphene oxide (GO) [51], and 

GQDs and CQDs. Carbon sources are plentiful and synthesis 

methods are numerous, which contribute to the diversity of 

carbon dots (CDs). Detailed insights into CD production, 

photoluminescence processes, and applications have been 

provided by several review papers [51-60]. This Outlook will, 

from a unique vantage point, emphasize the remarkable visual 

qualities of CDs and highlight recent noteworthy developments 
Fig 1: Types of Carbon Dot 
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in several areas, such as energy (catalysis, photovoltaics, energy-

efficient LEDs, rechargeable batteries), optical (sensors, 

information encryption), and potential uses in medicine 

(nanotechnology in medicine, phototherapy, drug/gene delivery 

process, biological imaging). To wrap off our talk, let's take a 

quick look at the planning, photoluminescence techniques, and 

carbon dot applications that are currently facing this field. In the 

future, this Outlook will offer significant revelations. and 

comparative viewpoints that will stimulate more fascinating 

research on carbon dots and promote advances in energy, 

medical, and environmental applications. 

 

2. Structure of Carbon Dot: 

The carbon skeleton makes up the majority of C-Dots, and two 

necessary elements hydrogen and oxygen are present in different 

proportions [61,62]. They are mostly amorphous spherical 

structures made of hybridized carbon particles, with sizes of not 

more than 10 nm [63]. It is important to differentiate them from 

Graphene Quantum Dots (GQDs) that are made entirely of sp2 

hybridized carbon stacked in a two-dimensional honeycomb 

pattern [64]. Various kinds of materials made up of carbon that 

rely upon distinct precursors and synthesis techniques are used 

in the production of C-Dots [65]. Rich surface alterations on C-

Dots with polar groups, such as carbonyl and carboxyl groups, 

are made possible by this method. 

                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Green Sources of Carbon Dot: 

When carbon dots (CDs) are obtained from "green sources," or 

renewable natural resources that act as precursors to carbon, they 

can be simply categorized as carbon quantum dots (CQDs). Only 

carbonaceous precursors are used in the synthesis of CDs, which 

frequently produces CDs with comparatively poorer quantum 

yield and solubility. To solve this, a variety of green carbon 

sources have been investigated in an attempt to create simple, 

affordable, green CDs with distinctive optical and electrical 

characteristics. These approaches have their roots in various 

synthetic techniques, and several papers indicate that green CDs 

can be successfully made from natural materials, as shown in 

(Fig 3). Generally speaking, the final carbon dots' (CDs') 

chemical composition is greatly influenced by the raw material 

choice. Furthermore, a number of these eco-friendly methods 

have shown improvements in the Quantum Yield (QY) that is 

attained, providing strong evidence for QY improvement 

through changed precursors. 

Enhancing the QY and solubility of synthesized CDs is largely 

dependent on surface passivation. In this context, green sources 

have been defined as plants, fruits, vegetables, juices, baked 

goods, and byproducts of human metabolism. Depending on 

whatever carbon precursor was selected, these CDs have been 

divided into separate sessions [66]. 

 

                                            
 

 

 

4. Properties of Carbon Dots: 

4.1 Physicochemical Properties:  

The electrical characteristics and photoluminescence of carbon 

dots (CDs) are strongly influenced by fluorophores, element 

doping, and surface states. These effects rely on electrical 

transitions taking place across the sp2 domain band gap. One 

important feature of CDs is the Quantum Confinement Effect 

(QCE), which is particularly significant for crystalline lattice-

containing graphene quantum dots (GQDs) and carbon quantum 

dots (CQDs). When the diameter of Carbon Dots is not more 

Fig 2. Structure of different CD’s [64] 

Fig 3: Some Sources of CD’s 
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than Bohr’s radius, this importance is more noticeable [67]. 

Quantum confinement gets more and more prominent when the 

radius of the exciton decreases when the system's dimensions are 

smaller than its Bohr radius. Size-dependent properties like the 

band gap and relaxation dynamics are the consequence of this 

process, which alters the electron distribution [68]. The 

Quantum Confinement Effect (QCE) in carbon dots (CDs) is 

primarily caused by the transition between discrete and 

continuous energy levels in the valence and conduction bands, 

which limits electron mobility in both directions. An increase in 

band gap affects the photoelectron properties of CDs as they get 

smaller (see Fig. 4). In CDs with larger conjugated sp2 domains 

and fewer surface states, QCE is usually more apparent. The 

electron transfer from the conductance band in order to the 

valence band-aids to the formation of a band gap, and the 

conjugated sp2 domains efficiently divide the valence and 

conduction bands. Higher energy excitation drives the 

confinement of excitons in a compact area because the average 

energy between the lowest conduction (EC) and highest valence 

(EV) bands increases with decreasing size [69]. Excitons 

produced by photon absorption determine the efficiency of solar 

systems. One electron-hole pair is typically produced by a single 

photon, and any extra photon energy is dissipated as heat. On the 

other hand, it has been shown that in reaction to a single photon 

absorption event, quantum dots (QDs), such as carbon dots, can 

produce numerous excitons through multiple exciton generation 

[70,71]. Robust interactions between carriers in CDs are 

responsible for the production of numerous excitons, which is a 

critical element for improving solar efficiency [72].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Electrochemical properties: 

The size, functions, and heteroatom doping of carbon dots (CDs) 

control their electrochemical characteristics [73]. The effect of 

graphene quantum dot (GQD) size on electrochemical properties 

was investigated by Liu et al., [74]. Their study proved that the 

particular electrolytic capacitor rose as the size of GQDs shrank. 

When scanning at 5000 Vs−1, then the smallest size 

demonstrated the best power output. These findings highlight the 

potential uses of graphene quantum dots (GQDs) in high-power 

response microelectronics. GQDs were added to husk-derived 

activated carbon by Li et al., to employ it in lithium-ion 

batteries. The electrode's electrochemical properties improved 

with the addition of GQDs, resulting in higher electrical 

conductivity, improved cycle stability, and a decrease in charge 

move impedance from 577.7 Ω to 123.9 Ω [75]. Carbon dots 

(CDs) are often created via oxidative cleavage of carbon 

precursors. Although edge oxygen-containing capabilities might 

improve catalytic activity, electron transport is limited by the 

defects these functionalities create in the sp2 hybridized carbon 

network [76]. To investigate the impact of reduction on 

electrochemical characteristics, carbon nanodots (CNDs) 

produced by electrochemical oxidation were reduced [77]. The 

improved sp2 conjugation led to a remarkable 30% improvement 

in the electron absorption of carbon nanodots (CNDs) during 

chemical reduction, even beyond the shift in decrease potentials 

to negative standard. Because of their advantageous 

electrochemical characteristics, CDs are frequently utilized in 

tasks involving supercapacitors. CDs were added to the Carbon 

Felt working electrode in an attempt to improve the electrode's 

electrochemical characteristics. A significantly higher 

capacitance electrode was created by including N2 and O2 mixed 

into CDs with minuscule diameters and N2 and O2 -containing 

functions than the previous "lignite" modified electrode. The 

enhanced supercapacitance over the precursor is caused by the 

functions, heteroatom doping, and bigger surfaces [78]. 

Although dopants have been used to alter the optical and 

electrochemical characteristics of carbon dots (CDs), little 

research has been done on how dopant concentration affects 

these characteristics. By enhancing the amount of urea content 

in thermal hydrolysis reaction, Christopher et al., investigated 

the influence of dopant concentration on the electrochemical 

characteristics of CDs. Not only did the emissive capabilities 

improve with an increase in nitrogen concentration, but it also 

improved the electrochemical characteristics, leading the 

oxidation potential to shift by up to 150 mV to negative values. 

 

4.3 Chemical Properties: 

The name "CD" refers to the large class of carbon-based 

nanoparticles having a diameter of not more than 10 nm and 

inherent characteristics of fluorescence, as explained in the 

previous part. On the other hand, different synthesis methods can 

be used to produce different kinds of CDs, each with its own set 

of chemical properties [79]. Graphene quantum dots (GQDs)are 

isotropic, edge-functioning particles composed of one or more 

graphene-laminated layers. Conversely, two other classes of 

carbon nanodots (CNDs) are (i) carbon nanoparticles (CNPs) 

and (ii) carbon quantum dots (CQDs). CNPs adopt an 

amorphous, spherical form, whereas CQDs have a crystal lattice 

structure [80,81]. Despite these differences, chemical families 

that incorporate nitrogen and oxygen constitute an essential 

surface functionality shared by all forms of CDs. Numerous 

characterization techniques, such as the analysis of crystallinity, 

morphology, size distribution, and chemical functionality, can be 

used to ascertain the structure of CDs. A useful method for 

figuring out a particle's form, size distribution, and average size 

is Transmission Electron Microscopy (TEM). Furthermore, 

lattice spacing, or crystallinity, can be assessed by comparing it 

to graphitic carbon as a reference material utilizing High-

Fig 4: The CDs' 𝜋-conjugated domains' dimensions affect electronic band structure and QCE [72] 
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resolution Transmission Electron Microscopy (HRTEM). 

Lattice spacing and Using TEM and HRTEM, the morphology 

of single-layer graphene quantum dots (GQDs) was examined 

[82]. The experiment's findings demonstrated a 2.2 ± 0.2 nm size 

variation with a 0.21 nm spacing between lattices at the graphene 

plane.When used to measure a particle's thickness or 

topographic profile, atomic force microscopy (AFM) can 

provide important details about the form, shape, and structure of 

the particle. AFM is especially helpful in the case of graphene 

quantum dots (GQDs) to gather data regarding the diameter and 

texture of the particles in addition to specifics like the aspect 

ratio and the number of graphene layers. Raman spectroscopy is 

a practical method for assessing the level of organization or 

clarity in carbon dots (CDs). Often, CDs' Raman spectra display 

two distinct bands: D and G. These bands correspond to the 

oscillations of flaws in the graphitic sp2 hybridized carbon and 

the graphitic structure (sp3 carbon) inside the nanomaterial. 

Furthermore, the degree of crystallization can be inferred from 

the proportion of intensity (ID/IG) of the disorderly D band and 

the crystal-like G band [83]. For instance, two peaks at 1337 and 

1583 cm−1 are visible in the graphene quantum dots (GQDs) 

Raman spectrum. These harmonics coincide with the G band, 

which is associated with the oscillations of sp2 hybridized carbon 

atoms, and the D band, which is associated with the oscillations 

of carbon with lattice flaws. [84]. With an ID/IG ratio of roughly 

0.83, a graphite-like structure was suggested. A suitable A band 

that matched pentagon and heptagon carbon rings was found by 

Xu et al., [85, 86]. Pentagon and heptagon rings are thought to 

be responsible for the increased A band to G band intensity 

proportion, which indicates exacerbated structural flaws in the 

carbon structure. 

 

4.4 Optical Properties: 

4.4.1 UV-vis absorbance of CD’s:  

Variations in absorption behaviors are always the result of using 

different carbon sources or synthetic procedures to create carbon 

dots (CDs). Usually, the π−π* shift of the C=C bond or the n−π* 

shift of the C=O/C=N bond is responsible for these absorption 

features. Nonetheless, CDs frequently show notable absorption 

in the 200–400 nm ultraviolet region, along with a tail that 

extends across the discernible spectrum [87, 88-92]. π-

conjugated electrons are commonly found in the sp2domains, 

linked surface groups, or polymer chains of CDs that emit red or 

near-infrared light. The longer wavelengths of light, usually 

between 500 and 800 nm, can be absorbed by the CDs thanks to 

this arrangement [93,94]. Therefore, the main factors 

influencing the absorption properties of CDs are the types and 

concentrations of the outermost groups, the size of π-conjugated 

areas, and variations in the carbon cores' oxygen/nitrogen 

composition. 

 

4.4.2 Photoluminescence of CD’s:  

Outstanding CDs with photoluminescence (PL) properties have 

many uses because, according to their composition, synthesis 

methods, and morphology, they show a range of color emissions 

and other optical characteristics. Nevertheless, difficulties in 

comprehending the PL mechanism and a lack of control over 

synthesis methods have limited the use of CDs [95]. Although 

the exact process underlying the photoluminescence (PL) of 

carbon dots (CDs), in particular Graphene Quantum Dots 

(GQDs) and Carbon Quantum Dots (CQDs), is still unknown, it 

is frequently impacted by surface states, heteroatom doping, 

features, defects, and edge arrangements, as well as the quantum 

confinement effect (QCE) [95,96]. Due to their size and 

compositional heterogeneity, the majority of CDs that have been 

observed to date show excitation-dependent emission 

characteristics in addition to both green and blue emissions [97-

99]. 

 

5. Synthesis Strategies of CD’s: 

Several essential parameters, such as the surface state, quantum 

confinement effects, and molecular state, affect the production 

of carbon dots (CDs). By changing the CDs' synthesis methods, 

these variables are easily controllable [100-103]. A wide variety 

of functional groups, including the hydroxyl group, carboxyl 

group, amines, epoxy-based materials, ether, etc., can be 

introduced throughout the CD manufacturing procedure 

[104,105]. Furthermore, the outermost layer of CDs can be 

efficiently customized by supplementing them with heteroatoms 

such as nitrogen, phosphorus, sulfur, Boron, and so forth 

employing a range of biological, polymeric, and organic 

materials [106,107]. Then, using different precursors or different 

synthesis techniques, it is possible to the amount and range of 

functional groups on the surface to regulate the characteristics 

of CDs [108]. To achieve significant surface properties for 

solvency and their advantageous applications, CDs must be 

modified [109,110].To improve the bio-applications of carbon 

dots (CDs), a great deal of study has been devoted to increasing 

their quantum yield (QY) either during or even after preparation 

[111-113]. It is difficult to get high QY and biocompatibility in 

CDs, nevertheless, because maximizing one frequently means 

sacrificing the other. Separately controlling each parameter can 

also be difficult. To get increased biocompatibility, CDs with 

enhanced surface passivation may have reduced light emission 

intensity, and vice versa. Notwithstanding these issues, it's still 

unclear how Carbon Dots function as more effective 

fluorophores that serve a variety of medical applications 

[114,115]. To generate carbon dots (CDs) with different 

quantum yields (QYs), a variety of food-derived carbon sources 

have been used, such as yogurt, honey, bananas, pomegranates, 

leaves, sugar beetroot molasses, eggs, rice bran, garlic, coffee 

beans, soybeans, coconut shells, tea leaves, grass, etc. [117-125]. 

Additionally, several eco-friendly techniques have been 

established for the one-step synthesis of fluorescent CDs using 

harmless precursors, either organic or synthetic, for particular 

biosensing applications. For example, CDs have been 

synthesized from wool to measure glyphosate [126], and CDs 

have been prepared from chitosan functionalized with sodium 

fluoride to measure the amount of retinoic acid [127]. It is 

possible to synthesize CDs using any of the two approaches—

that is, top-down or bottom-up methods [128]. Whereas the latter 

method either carbonizes small organic molecules or 

sequentially integrates tiny aromatic molecules, the former 

method requires breaking down carbon-based substances into 

smaller nano-sized fragments by electrochemical, chemical, or 

physical means [129,130]. These two techniques of CD 

synthesis, as shown in Figure 3, are further divided into different 

categories [131,132]. 

 

5.1 Top-down Approach: 

Nowadays, carbon dots (CDs) are made from macroscopic 

carbonaceous compounds such as activated carbon, carbon 

nanotubes (CNTs), and graphite using top-down processes like 

arc discharge, laser ablation, ultrasonic treatment, and 

electrochemical approaches [133-135]. Nevertheless, high-

energy, high-potential, and extremely acidic conditions are 

typically where these techniques work. These top-down tactics 
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demand harsh operating conditions, which makes them 

somewhat more arduous than bottom-up processes [136,137]. 

 

5.1.1 Arc Discharge Method:  

Even though arc discharge therapy may result in CDs with poor 

quantum yields (QYs), arc discharge treatment is nevertheless a 

feasible way to generate CDs from unprocessed carbon 

nanotubes (CNTs) [138]. The arc discharge process and single-

walled carbon nanotubes (CNTs) through a process of oxidation 

were used as carbon sources in the groundbreaking work of Xu 

et al., and Bottani et al., in 2004 [139,140]. Furthermore, Arora 

and Sharma showed that the arc discharge method can be used 

to reorient the carbon atoms produced by disintegration. This is 

especially true when using bulky carbon precursors during the 

CD synthesis to produce extremely energetic plasma inside the 

reaction assembly [141]. It is important to remember, 

nonetheless, that the arc discharge method frequently produces 

a high number of composite categories, which presents 

difficulties for purification [142]. 

 

5.1.2 Laser Ablation Method: 

As part of the laser ablation process, the heavy carbon-based 

substance is exposed to a thermodynamic atmosphere that 

produces extremely high temperatures and pressures using a 

highly energetic laser beam. As a result, there is an increase in 

heat and the dehydration of plasma. Later, a crystallization 

procedure turns the produced vapour into CDs [143]. Using 

argon as a carbon target and water vapour carrier gas via laser 

ablation, Sun et al., demonstrated the production of luminous 

carbon dots (CDs) [144]. In another work, 3 nm-sized 

fluorescent CDs were created by suspending carbon-like glass 

particles in polyethylene glycol and then exposing them to laser 

light [145]. As fluorescent markers for in vivo bioimaging of 

human epithelial cells, including both malignant and healthy 

types, these as-synthesized CDs may find use [145]. Nitrogen-

doped carbon dots (CDs) can be created from the powdered form 

of graphite by laser ablation using organic solvents like amino 

toluene [146]. Ratiometric pH can be measured since this 

method makes it easier to produce CDs with wavelengths that 

are not dependent on stimulation because of the amount of amine 

and oxygen molecules on their outermost part [146]. The carbon 

dots (CDs) produced by double-beamed laser ablation may 

exhibit superior properties to those produced through single-

pulsed laser beam ablation, including greater quantum yield, 

miniature diameter (~1 nm), higher surface-to-volume 

proportion, improved steadiness, and greater uniformity 

[147,148]. Therefore, to improve the catalytic and sensing 

properties of CDs, double-pulsed laser ablation is the 

recommended method [148]. 

 

5.1.3 Ultrasonic Method: 

Through the use of ultrasonic waves that operate at both high 

and low pressures, this approach creates tiny vacuum bubbles 

that are then uniformly distributed throughout the solution [142]. 

Through the production of a strong hydrodynamic shear force 

and quick liquid jet violation, this dispersion process aids in the 

prevention of aggregation [142,149]. Large-sized carbon-based 

nanomaterials including graphite, which is activated carbon, and 

carbon nanotubes (CNTs) can be converted into nanosized 

carbon dots (CDs) by using the energy produced by the 

ultrasonic technique [149,150]. Because the synthesis of amine-

functionalized carbon dots (NH2-CDs) involves a hydrothermal 

procedure involving severe reactions of chemicals, several 

phases, and high temperatures, the technique is usually costly 

and time-consuming [151]. Wu et al., recognized this and 

created a way to employ the ultrasonic process to create amine-

functionalized CDs, which provides a more straightforward and 

effective method for sensing nucleic acids and metal ions like 

cobalt (II) ions for cell imaging [151].  

In a different study, Huang et al., demonstrated how PEG-

decorated carbon dots with a high quantum yield (QY) for cell-

based imaging could be created utilizing a single-stage 

ultrasonic technique utilizing cigarette trash as well as thiol 

group-containing polyethylene glycol (SH-PEG). [152]. 

 

5.1.4 Electrochemical/Chemical Oxidation Method: 

The most used method for preparing CDs is 

electrochemical/chemical oxidation due to its advantages. The 

size of CDs can be easily adjusted and very pure CDs that have 

high QY can be obtained for mass manufacture using this fast, 

easy, and repetitive process [144,153]. generally, oxidation-

reduction procedures employing chemical or electrochemical 

techniques are used to synthesize carbon dots (CDs) at room 

temperature and pressure [154]. In these procedures, strong 

oxidizing agents including hydrogen peroxide (H2O2), sulfuric 

acid (H2SO4), and nitric acid (HNO3) are frequently used [154]. 

Hydrophilic functional groups, including -NH2, -COOH, -OH, 

and others, may be properly customized onto the surface of CDs 

by managing the redox processes and the electrolyte 

compositions [154,155]. The formation of carbon dots (CDs) 

with distinctive properties including fluorescence emission, 

cytotoxicity, and surface states can be influenced by the 

selection of electrolytes and electrode materials [156–159]. 

Regarding this, Liu et al., proposed a straightforward method for 

producing CDs suitable for bioimaging applications including 

identifying the presence of ferric ions (Fe3+) in water samples, 

using graphite as the electrode material [157]. Graphite is 

oxidized in alkaline alcohols during the electrochemical 

synthesis process to produce carbon dots (CDs), which have a 

diameter of about 4 nm and good crystallinity [144]. Via 

regulated chemical oxidation, powerful oxidants like nitric acid 

(HNO3) and perchloric acid (HClO4) can add carbon atoms to 

small organic molecules, converting them into carbon-

containing materials and allowing them to be inserted into 

smaller sheets [160]. Tan et al., developed a method for 

producing a range of CD microstructures appropriate for 

bioimaging applications after realizing that the microstructure of 

CDs is influenced by their optical properties. To create CDs with 

adjustable fluorescence, required carefully oxidizing graphitized 

activated carbon using oxidizing chemicals such as HNO3 and 

ClO4 [161]. 

 

5.2. Bottom-Up Approach: 

Due to its many benefits, which include the possibility of 

practical application, the use of non-toxic precursor compounds, 

cost-effectiveness, simplicity and convenience of methodology, 

ease of instrumentation, and accurate measurement, methods 

that work from the bottom up are currently popular [160]. 

 

5.2.1. Thermal Method: 

Thermal breakdown, which entails pyrolyzing or carbonizing 

big carbonaceous precursors at high temperatures, is one of the 

most efficient methods for creating carbon dots (CDs) [160-

162]. Large-scale CD production, affordability, shortened 

reaction times, improved precursor tolerance, free-of-solvent 

methods, and ease of synthesis are only a few benefits of this 

approach [160-163]. By modifying factors like reaction 

temperatures, reflux duration, and reaction-mix pH, the thermal 
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method also enables the optimization of CDs' luminous 

characteristics [160-164]. To produce carbon dots (CDs), Shang 

et al., employed the thermal method to pyrolyze citric acid as a 

precursor molecule, varying the degree of carbonization [165]. 

Ma et al., presented a method in a different study for producing 

nitrogen-doped CDs on a large scale using one-step pyrolysis, to 

produce final CDs with a high conversion rate (>80%) and a high 

fluorescence quantum yield (~88%) [166]. Additionally, Wang 

et al., used the oxygen-free property to their advantage to 

synthesize CDs with a high quantum yield (~87%) by directly 

carbonizing carbon microcrystal precursors and regulating their 

size [167]. 

 

5.2.2. Microwave-assisted Method: 

Microwaves offer more energy for the breaking down of 

chemical bonds in precursor molecules due to their broad 

spectrum of electromagnetic waves, which spans from 1 mm to 

1 m [160-168]. By producing homogeneous heat, the 

microwave-assisted method guarantees the uniform distribution 

of carbon dots (CDs) and is relatively easy, fast, cheap, and 

requires shorter reaction times [169]. Yu et al., synthesized CDs 

by using two primary compounds —triethylenediamine 

hexahydrate and phthalic acid—using a one-step microwave-

assisted synthesis method. According to reports, this method can 

be used to create CDs with a greater emitting wavelength, 

superior biological compatibility, and intense green 

luminescence in about one minute [170]. Using 2,2-dimethyl-

1,3-propanediamine as the carbon source and citric acid 

monohydrate as the nitrogen source, Ghanem et al., published a 

microwave-aided production method for N-plated CDs. Using 

this technique, the right away N-doped CDs may show 

impressive fluorescence features with elevated QY [170]. 

Another work used microwave irradiation to create fluorescent 

carbon dots (CDs) by applying glucosamine to a Co-polymer 

layer composed of PEG and chitosan. The resultant CDs could 

have excitation-dependent fluorescence, robust fluorescence 

intensity in biological matrices, and improved chemical stability 

[170]. 

 

5.2.3. Hydrothermal Method: 

The production of carbon dots (CDs) via the Hydrothermal 

Carbonization (HTC) process is inexpensive, non-toxic, and 

environmentally benign. It involves the reaction of organic 

precursors that are heated to high pressures inside a sealed 

hydrothermal reactor. Because of its versatility, the HTC 

technique can be used to make CDs from a wide range of raw 

materials, including proteins, chitosan, citric acid, glucose, and 

others. Recently, Hasan et al., showed how to use the 

hydrothermal carbonization (HTC) process to create several 

types of carbon dots (CDs). As precursors, they used furfural, 

hydroxy-methyl furfural, and microcrystalline cellulose. Under 

short-wavelength UV light, these CDs may display a variety of 

absorption and emission properties as well as green illumination, 

based on the particular precursor used [167]. In a different work, 

Luo et al., used the hydrothermal method to create CDs, starting 

with precursor molecules such as cysteine, ethylenediamine, and 

trisodium citrate dihydrate. The resultant CDs showed strong 

blue radiation, excellent biological compatibility, and great 

luminescence persistence. Sun et al., provided a method for 

creating nitrogen and sulfur combined carbon dots (N/S-CDs) 

hydrothermally, utilizing gardenia fruit as the raw material . The 

resulting N/S-CDs were discovered to be round and around 2nm 

in size when exposed to UV light. Additionally, over a wide pH 

value and at greater salt denseness, they demonstrated good 

luminescence stability. In a different work, methyl blue, citric 

acid, and ethylenediamine were applied as precursor origin for 

the hydrothermal generation of N/S-CDs. The resulting N/S-

CDs showed the emission of blue fluorescence that was 

independent of stimulation. 

 

5.2.4. Template Method: 

The formation of CDs using the template approach consists of 

two steps: ( i) calcining the required CDs in mesoporous silicon 

spheres or an appropriate template; and (ii) a cleaning process to 

eliminate supports [160]. Nevertheless, the synthesis of CDs has 

not made greater use of this technology. Kurdyukov et al., 

synthesized homogenous orbicular CDs with a graphite-like 

structure and a size of around 3.3 nm using the template 

approach. The plan was to introduce silane functionalized 

compound as an antecedent into the pores of perforated silica 

granules, decompose it thermally while CDs were synthesized, 

and then remove the template . Additionally, a soft-hard template 

technique was reported by Yang et al., to create CDs with 

customizable crystallographic degrees, sizes, compositions, and 

photoluminescence properties. This technique made use of 

ordered perforated silica (OMS) SBA-15 as the hard template 

and conjugated polymer Pluronic P123 as the soft template. Four 

different chemical compounds were used as the carbon sources 

at the same time: pyrene (PY), 1,3,5-trimethylbenzene (TMB), 

diamine-benzene (DAB), and phenanthroline (PHA) [167]. 

 

6. Conclusion, Challenges and Future Aspects: 

In this article, we have mentioned the categories of CDs, their 

optical, electrical characteristics, and their production 

techniques. Because of their exceptional electrical, optical, and 

biological properties— The carbon-based CDs nanomaterials 

have attracted a lot of attention and interest in the fields of 

nanotechnology and biomedical science due to their many 

advantages including enhanced electron adaptability, effects on 

light bleaching and photo-blinking, high photoluminescent 

quantum yield, luminescence property, durability against photo-

decomposition, raised electrocatalytic action, excellent 

solubility in water, outstanding biological compatibility, long-

term resistance to chemicals, cost-effectiveness, minor toxic 

exposure, and a significant efficient surface area to volume 

proportion. Compared to other carbon-based substances and 

QDs, the study on CDs remains in its early stages. One of the 

most fundamental challenges today is the absence of a rational 

and accessible production process to produce excellent CDs with 

desired architectures (e.g. size, shape, crystalline structure, 

quantities of functional groups, type, and positioning of flaws). 

Their specific reaction procedure, nucleation procedure, and 

generation procedure are known due to uneven synthetic routes 

and impurities. Therefore, for the effective massive-scale 

synthesis of CDs with high performance, the impacts of 

predecessors and reaction parameters (e.g., temperature, time, 

pH) on the efficiency of CDs must be thoroughly examined. 

Furthermore, a dimension- or orientation-dependent purification 

approach must be developed. Notably, developing in situ 

methodologies is required to characterize the mechanism of CD 

production, which is important for controlling the synthesis of 

CDs with certain nanostructures. 
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